

© Springer-Verlag 1997

Study of the Tautomerism by Experimentally and Theoretically Estimated ¹³C and ¹⁵N Chemical Shifts^{\$}

Andreas Koch*, Erich Kleinpeter

Universität Potsdam, Institut für Organische Chemie und Strukturanalytik, Am Neuen Palais 10, 14469 Potsdam, Germany; Tel.: +49-331-9771246; Fax : +49-331-9771776 (koch@pluto.chem.uni-potsdam.de)

Received: 13 June 1997 /Accepted: 24 July 1997 /Published: 26 August 1997

Abstract

2-Substituted 5-Me-7OH-1,2,4-Triazolo[1,5-a]pyrimidines can exist as different tautomeric forms. The tautomeric equilibrium of these compounds were determined by various NMR spectroscopic methods and quantumchemical calculations. The tautomeric equilibria of 2-substituted 1,2,4-Triazolopyrimidines depend on the used solvent. In order to take solvent effects into account, *ab initio* calculations using the SCI-PCM method were carried out. The solvation energy depends on the polarity of the substituents in position 2. The comparison of chemical shifts determined by experimental methods and theoretical *ab initio* methods were used to definitely find out the the tautomeric equilibria of these compounds.

Keywords: NMR spectroscopy, Solvent effects, Chemical shifts, GIAO, SCIPCM

Introduction

1,2,4-Triazolo[1,5-a]pyrimidines are biologically active compounds, which are applied as herbizides, pestizides, growth regulators, vasodilators. They have also photostabilizing properties. These compounds can exist at least in four tautomeric forms and in seven tautomeric forms if the substituents at position 2 are included in the process of tautomerism (Figure 1 and 2).

The ¹³C and ¹⁵N NMR spectra of the following compounds [1] were recorded in DMSO-_{d6} and assigned by employing the whole arsenal of 1D and 2D NMR spectroscopic methods (Scheme 1).

^{\$} Presented at the 11. Molecular Modeling Workshop, 6 -7 May 1997, Darmstadt, Germany

* To whom correspondence should be addressed

The process of proton exchange proved to be fast on the NMR time scale. Therefore the determination of different tautomeric forms **a-d** of these compounds is difficult. Only this fast equilibrium of the most stable tautomeric forms can be studied by NMR spectroscopy. The relative stabilities of the different tautomeric forms cannot be concluded from the corresponding experimental results.

In principle, the relative stabilities of the various tautomeric forms can be determined using theoretical *ab initio* methods. Outgoing from the results of *ab initio* calculations at a high level of theory the relative energies of the structures participating in tautomeric equilibria can be concluded. However, these quantum chemical calculations of tautomeric equilibria are very complicate. In the studied compounds **1-12** each tautomer has a different type of conjugation. Typical quantum chemical errors, as basis set error, electron correlation error, solvent effects, are not easily to be compensated as e.g. along the conformational search of a molecule. The

Atom	Exp.	STO-3G	3-21G	6-31G*	6-31+G**	BLYP6-31G*	BLYP6-31+G**
C2	154.9	157	154	155	157	148	152
C5	164.3	159	159	168	172	152	157
C6	110.6	110	99	101	101	103	105
C7	146.8	138	143	150	153	136	141
С9	154.4	155	148	154	155	148	152
C10	16.3	32	25	25	25	25	26
C11	24.3	29	20	17	18	18	19

Table 1. Experimental (red) ¹³C chemical shifts of the 2,5-Me-7- 1,2,4-triazolo[1,5-a]pyrimidine **13** and results from ab initio calculations (GIAO) using various basis sets and various methods

calculations of the tautomeric equilibria of **1-12** are even more difficult because these tautomeric equilibria are characteristically depend on present substituents and solvents employed.

However, a combination of both NMR spectroscopy and theoretical calculations seems to be very promising by concluding the position of present tautomeric equilibria. In addition the comparison of calculated and experimentally determined chemical shifts can be used to find out the most stable tautomeric form of the studied compounds.

Methodology

The GAUSSIAN 94 program [2] and 6-31G* split valence basis sets [3]were used at the Hartree-Fock-level and at the DFT-BLYP-level [4]. Relaxed conformational energies were calculated by minimizing the whole structures of the compounds. The solvent effects of DMSO were taken into account using a self-consistent reaction field model (SCRF). The SCI-PCM method [5] was employed. The dielectric constant of DMSO (46.7) which was used in the parallel NMR studies and the molare volume defined by a 0.0004 a.u. isodensity value of the electron density were applied [6].

The NMR chemical shifts were calculated using the "gauge-including" atomic orbital (GIAO) method [7]. The chemical shift is a difference of the chemical shielding, (¹³C and ¹⁵N), of the molecule and the chemical shielding of a reference compound. The GIAO method is implemented into the GAUSSIAN 94 program [2].

In order to be comparable the calculation of the nuclear shieldings of the reference compounds (TMS for ¹³C and nitromethane for ¹⁵N) and **1-13** has to be carried out at the same level of theory. It should be noted that the calculation of nuclear shieldings is strongly depend on the used basis sets. Therefore we checked the results of calculated chemical shifts of compound **13** using various basis sets and levels of theory (HF/STO-3G, HF/3-21G, HF/6-31G*, HF/6-31+G**, BLYP/6-31G*, BLYP/6-31+G**) (Table 1). Results at the HF/6-31G* level of reference compound **13** show sufficient agreement with the experimental values [8] and there-

X = O, S, NH

Figure 1. Mostly relevant tautomeric forms of 2-substituted 5-Me-7-OH-1,2,4-triazolo[1,5-a]pyrimidines four tautomers.

Table 2. Solvation energies of variuos tautomeric forms in kcal/mol calculated as differences of HF/6-31G* energies and the SCI-PCM//HF/6-31G* energies

Compour	ompound		a b		c	d		
1	1		12	12.9		12	12.3	
2		22.1	20).8	22.6	18	18.1	
3	3		20.1		15.2	14	14.3	
4		17.7	21.2		20.6	19.7		
5		15.6	17.5		13.5	12.9		
7	7		18.2		17.9	16	5.7	
8		12.9	20.0		15.2	14	.2	
10		8.5	13	8.0	14.2	13	3.4	
11		7.3	13	8.9	17.2	12	2.8	
12	12		10.2		12.5	11.7		
Comp.	a	b	c	d	e	f	g	
6	10.9	17.0	16.2	14.8	23.0	18.4	12.8	
9	12.6	19.8	22.2	18.5	24.4	22.1	15.6	

Scheme 1. Compounds 6,9 correspond to Figure 2, no tautomeric forms exist for compound 13

fore the chemical shieldings of **1-12** were calculated at this level.

The ¹³C and ¹⁵N NMR spectra of the compounds **1-13** were recorded in DMSO-d₆ as the solvent on a BRUKER ARX 300 NMR spectrometer and on a JOEL NMR spectrometer Alpha 500. 1D- and 2D-experiments were carried out. We already reported the details of experimental determination and the experimental results in references [1,8].

Results and Discussion

In our previous work [8,9] we already reported the application of the relative stabilities of the tautomeric forms in order to find out the position of present tautomeric equilibria . The tautomeric equilibria of **1-12** are influenced by solvents, especially when using polar solvents like DMSO. Solvation energy of the various tautomeric forms depends on the present substituents. Table 2 shows the solvation energy of all tautomeric forms of each molecule calculated using SCI-PCM method with a dielectric constant of DMSO (46.7) and the $HF/6-31G^*$ method.

The more polar the substituent in position 2 (3, 4, 5, 7, 8), the more tautomers **b** were stabilized. Non-polar substituents in position 2 (1, 2, 10, 11, 12) lead to stronger stabilization of tautomers **c** relative to the other tautomeric forms.

For all compounds 1-11 the tautomeric lactim forms b have been shown as the most stable tautomeric forms [8]. For compound 12 the tautomeric form **a** is more stable than the other forms. On the other hand, the calculated chemical shifts of these most stable forms are the best in accordance with the experimentally obtained values (cf. Table 3 for ¹³C and Table 4 for the corresponding ¹⁵N chemical shifts). These results are illustrated in Figure 3 and Figure 4 by compound 4 as an example of the whole set 1-12. The determination of the experimental results are shown in reference [8]. For compound **6** we got no experimental data of 15 N chemical shifts and broad lines of ¹³C chemical shifts. This is in agreement with the theoretical results. The differences of the relative energies of tautomers 6b, 6f and 6g are very small (SCIPCM/ /HF/6-31G* energies differ less than 1 kcal/mol). But the best correlation of ¹³C chemical shifts between experimental and theoretical results exist for tautomer 6b.

Both the calculated ¹⁵N and ¹³C chemical shifts of the most stable tautomers of all compounds **1-12** studied show significant better correlations to experimental data than the other tautomeric forms of these compounds.

Figure 2. Seven tautomers of compounds 6, 9

Conclusions

The tautomeric equilibria of 2-substituted 5-Me-7-OH-1,2,4triazolo[1,5-a]pyrimidines are depending strongly on the used solvent. The process of proton exchange is fast on the NMR time scale and therefore it is not possible to determine the tautomeric equilibria definitely. These solvent effects must be taken into account for the *ab initio* calculations of these equilibria. The combination of ¹³C/¹⁵N NMR studies and *ab*

initio calculations of the relative stability of the tautomeric forms together with their $^{13}C/^{15}N$ chemical shifts can be employed to easily determine the position of these tautomeric equilibria. The calculated chemical shifts of the most stable tautomeric forms correspond to the experimentally determined chemical shifts. The results of the GIAO method at the HF/6-31G* level are in agreement with the experimentally determined chemical shifts checked for compound **13**. All compounds **1-11** exist as the lactim form **b**, if the polar solvent DMSO is used. Compound **12** occures as the tautomeri**a**.

Figure 3. ¹³C chemical shifts of compound **4** experimental data (red) and calculated values (HF/6-31G*)

Figure 4. ¹⁵N chemical shifts of compound **4** experimental data (red) and calculated values (HF/6-31G*)

Table 3. Experimental (italic) ¹³C chemical shifts of the 2substituted 1,2,4-triazolo[1,5-a]pyrimidines **1-12** and results from ab initio calculations (GIAO HF/6-31G*)

Comp.	C2	C5	C6	C7	C9	C11	Comp.	C2	C5	C6	C7	C9	C11
1	164.1	151	98.1	155.6	150.7	18.5	7	161.7	150.7	98.4	154.8	151.1	18.4
1a	170	174	81	152	156	25	7a	169	176	82	152	156	25
1b	163	146	95	150	149	19	7b	168	148	96	149	150	19
1c	146	165	97	151	149	24	7c	153	166	98	150	148	24
1d	165	171	94	152	155	25	7d	171	170	96	151	152	25
2	160.4	151.5	98.2	155.7	151.5	18.6	8	154	152.4	98.4	155.6	150.9	18.6
2a	165	174	82	152	156	25	8a	157	179	84	152	154	29
2b	160	147	95	150	149	19	8b	151	152	93	149	148	23
2c	147	166	96	151	149	24	8c	139	171	94	151	148	28
2d	160	171	93	152	154	25	8d	150	175	93	152	152	29
3	154	152.4	98.5	155.6	150.9	18.6	9	153.8	151.5	98.8	155.2	150.3	18.6
3a	157	176	84	152	154	25	9a	165	176	83	153	154	25
3b	151	148	96	149	148	19	9b	151	146	97	149	149	18
3c	139	167	97	150	148	24	9c	148	166	98	150	147	24
3d	150	171	95	151	152	25	9d	149	171	95	152	152	25
4	156.5	152.8	98.9	155.6	151.2	18.7	9e	165	180	78	151	157	25
4a	158	176	84	152	154	25	9f	158	150	95	147	148	19
4b	154	150	96	150	149	20	9g	148	168	97	149	141	24
4c	139	168	98	151	148	25	10	151.9	151.7	98.2	155.9	150.6	18.7
4d	150	171	96	151	153	25	10a	156	174	82	152	155	25
5	156.2	152.4	98.7	155.7	151	18.7	10b	150	147	95	150	149	19
5a	160	176	84	153	154	25	10c	133	166	97	151	148	24
5b	154	147	96	149	148	19	10d	148	171	94	152	154	25
5c	142	167	96	151	148	24	11	151.8	148.7	114.5	177	147.6	19.2
5d	153	171	95	152	153	25	11a	155	168	100	153	154	24
6	163.9	149.3	99.2	154.7	151.6	19.2	11b	152	140	107	202	146	18
6a	163	174	82	153	155	25	11c	134	161	113	199	146	23
6b	160	146	96	149	150	19	11d	146	169	111	188	151	24
6c	146	164	98	151	148	24	12	154.2	163.1	89.9	155.5	148.4	24.4
6d	159	170	96	142	154	25	12a	156	172	80	150	156	25
6e	150	176	75	149	155	25	12b	150	140	97	144	147	19
6f	148	148	95	148	149	19	12c	133	157	98	146	146	24
6g	139	168	96	150	144	23	12d	146	166	91	151	153	25

Table 4. Experimental (italic) ¹⁵N chemical shifts of the 2-substituted 1,2,4-triazolo[1,5-a]pyrimidines **1-5,7-12** and results from ab initio calculations (GIAO HF/6-31G*)

Comp.	N1	N3	N4	N8	Comp.	N1	N3	N4	N8
1	-117.4	-187.6	-253.9	-156.2	8	-101.7	-162.4	-254.4	-153.4
1a	-173	-183	-156	-206	8a	-150	-187	-160	-198
1b	-139	-247	-306	-197	8b	-107	-203	-306	-188
1c	-142	-283	-234	-204	8c	-128	-287	-230	-202
1d	-270	-179	-204	-221	8d	-268	-182	-203	-217
2	-124.3	-165.4	-253	-156.1	9	-128.8	-175.5	-254.2	-161
2a	-163	-178	-153	-204	9a	-192	-210	-161	-209
2 b	-129	-195	-305	-196	9b	-165	-219	-305	-201
2c	-139	-280	-231	-201	9c	-170	-290	-184	-211
2d	-266	-191	-206	-219	9d	-282	-211	-206	-225
3	-101.7	-162.4	-252.8	-153.6	9e	-277	-208	-158	-248
3 a	-151	-187	-155	-198	9f	-274	-220	-303	-236
3b	-107	-203	-306	-188	9g	-285	-300	-225	-240
3c	-128	-287	-231	-201	10	-110.6	-165.4	-252.3	-155
3d	-267	-182	-203	-216	10a	-164	-181	-154	-203
4	-105.2	-166.3	-251.8	-153.2	10b	-127	-196	-305	-193
4a	-152	-180	-152	-198	10c	-129	-286	-234	-202
4 b	-105	-196	-305	-188	10d	-269	-174	-203	-220
4 c	-100	-288	-232	-197	11	-102.4	-173.1	-230.5	-142.6
4d	-270	-174	-201	-217	11a	-147	-178	-140	-193
5	-204.8	-108.6	-62.6	-109.7	11b	-122	-198	-299	-178
5a	-246	-210	-242	-202	11c	-123	-285	-216	-187
5b	-291	-198	-94	-210	11d	-254	-177	-179	-203
5c	-267	-115	-169	-199	12	-120.4	-156.6	-148.6	-173.4
5d	-135	-214	-196	-184	12a	-158	-185	-167	-207
7	-124.3	-168.5	-254.3	-155.1	12b	-140	-198	-314	-206
7a	-180	-185	-157	-204	12c	-140	-287	-243	-216
7b	-162	-199	-305	-198	12d	-266	-179	-215	-235
7c	-165	-283	-231	-206					
7d	-272	-192	-206	-222					

 $R = COSCH_2COOH$

Figure 5. *Tautomeric forms of compound* **4** (*numbering of atoms*)

Acknowledgement. The Konrad-Zuse-Supercomputing centre Berlin is greatfully acknowledged for supplying CPU time on the CRAY- 916 supercomputer.

References

- 1. Kleinpeter; E.; Thomas, S.; Fischer, G. J. Mol. Struct., **1995**, 355, 273.
- GAUSSIAN 94, Revision C.1, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Gill, P.M.W.; Johnson, B.G.; Robb, M.A.; Cheeseman, J.R.; Keith, T.A.; Petersson, G.A.; Montgomery, J.A.; Raghavachari, K.; Al-Laham, M.A.; Zakrzewski, V.G.; Ortiz, J.V.; Foresman, J.B.; Cioslowski, J.; Stefanow, B.B.; Nanayakkara, A.; Challacombe, M.; Peng, C.Y.; Ayala, P.Y.; Chen, W.;

Wong, M.W.; Andres, J.L.; Replogle, R.; Gomperts, E.S.; Martin, R.L.; Fox, D.J.; Binkley, J.S.; Defrees, D.J.; Baker, J.; Stewart, J.J.P.; Head-Gordon, M.; Gonzales, C.; and Pople, J.A. Gaussian Inc., Pittsburg, PA, **1995**

- Hehre, W.J.; Radom, L.; Schleyer, P.v.R.; Pople, J.A., *Ab Initio Molecular Orbital Theory*, Wiley: New York, 1986
- 4. Becke, A.D., J. Chem. Phys. 1993, 98, 1372.
- 5. Wong, M.W., Wiberg, K.B., Frisch, M.J., J. Comp. Chem. **1996**, 16, 385.
- 6. Wiberg, K.B. Castejon, H.; Keith, T.A. *J. Comp. Chem.* **1996**, *17*, 185.
- 7. Ditchfield, R. Mol. Phys., 1974, 27, 789.
- 8. Kleinpeter, E., Koch, A., Fischer, G., Askolin, C.-P., J. *Mol. Struct.* **1997** in press
- 9. Koch, A., Thomas, S., Kleinpeter, E., J. Mol. Struct. THEOCHEM 1997 in press